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Types of Information

•Local
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Types of Information

•Local

•Contextual

•Spatial .. .
...
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Approaches classification

•Atlas registration based

•Hand-crafted features (Machine Learning)

•Learnt features (Deep Learning)

Chen H. et al. NeuroImage 2018.
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Atlas registration based 

Atlas registration based Hand-crafted features Learnt featuresApproaches:

Graph Cuts
Level Sets

Non-linear Registration
…

min 𝐸(𝑠)

Segmentation

Image

Atlases

T1, T2, PD…

Overview

Initial Estimation
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Atlas registration based 

•Single-atlas approach

– Average

– Most similar
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Atlas registration based 

•Single-atlas approach

– Average

– Most similar

Not realistic
Sensitive to outliers

Atlas registration based Hand-crafted features Learnt featuresApproaches:
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Atlas registration based 

•Single-atlas approach

– Average

– Most similar Biased
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Atlas registration based 

•Single-atlas approach

– Average

– Most similar

•Multi-atlas approach

– N most similar

– Use many as single-atlas

▪ Majority voting (Artaechevarria X. et 

al. Trans. Med. Im. 2009.)

Majority voting

𝑌𝑣 = 𝑎𝑟𝑔max
𝑖=0

𝑁

𝑓(𝐴𝑣
𝑖 , 𝑦)

𝑓 𝐴𝑣
𝑖 , 𝑦 = ൝

1 𝑖𝑓 𝐴𝑣
𝑖 = 𝑦

0 𝑖𝑓 𝐴𝑣
𝑖 ≠ 𝑦

where
𝑦

𝑌𝑣 final label at voxel 𝑣,

𝐴𝑣
𝑖 atlas 𝐴𝑖 at voxel 𝑣,

𝑁 number of atlases

𝑦 label

.
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Atlas registration based 

•Single-atlas approach

– Average

– Most similar

•Multi-atlas approach

– N most similar

– Use many as single-atlas

▪ Majority voting (Artaechevarria X. et 

al. Trans. Med. Im. 2009.)

▪ Bayes (Ali AA. et al. NeuroImage 2005.)

Bayesian statistics

𝑃 𝑌 𝑋 =
𝑃 𝑋 𝑌 𝑃(𝑌)

𝑃(𝑋)

where

𝑋 voxel

𝑌 label

Atlas registration based Hand-crafted features Learnt featuresApproaches:
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Atlas registration based 

•Single-atlas approach

– Average

– Most similar

•Multi-atlas approach

– N most similar

– Use many as single-atlas

▪ Majority voting (Artaechevarria X. et 

al. Trans. Med. Im. 2009.)

▪ Bayes (Ali AA. et al. NeuroImage 2005.)

▪ MRF (Bae MH. et al. NeuroImage 2009.)

▪ …

Markov Random Field

𝑃 𝑦𝑣 𝑦𝑆− 𝑣 = 𝑃(𝑦𝑣|𝑦𝑁𝑣)

where

𝑣 voxel

𝑆 set of all voxels

𝑁𝑣 neighbor voxels of 𝑣

Atlas registration based Hand-crafted features Learnt featuresApproaches:
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Atlas registration based 

Disadvantages:

•Registration is needed (affine 
and/or non-linear).

•Computationally expensive.

•Very sensitive to registration.

Atlas registration based Hand-crafted features Learnt featuresApproaches:
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Hand-crafted features (Machine Learning)

Atlas registration based Hand-crafted features Learnt featuresApproaches:

# 1. Generate a feature collection

for voxel in allVoxels:

f = generateFeatureVector(voxel)

allFeatures.append(f)
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Hand-crafted features (Machine Learning)

Atlas registration based Hand-crafted features Learnt featuresApproaches:

# 1. Generate a feature collection

for voxel in allVoxels:

f = generateFeatureVector(voxel)

allFeatures.append(f)

# 2. Train a model

model = SVM(parameters)

model.fit(allFeatures)

J. Miguel Valverde
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Hand-crafted features (Machine Learning)

Atlas registration based Hand-crafted features Learnt featuresApproaches:

Vector of features:

•Local intensities (Wu T. et al. 

NeuroImage 2012.)

.
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Hand-crafted features (Machine Learning)

Atlas registration based Hand-crafted features Learnt featuresApproaches:

.

Vector of features:

•Local intensities (Wu T. et al. 

NeuroImage 2012.)

•Neighbour intensities, 
gradients (Pereira S. et al. Journal of 

Neuroscience Methods 2016)
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Hand-crafted features (Machine Learning)

Atlas registration based Hand-crafted features Learnt featuresApproaches:

Vector of features:

•Local intensities (Wu T. et al. 

NeuroImage 2012.)

•Neighbour intensities, 
gradients (Pereira S. et al. Journal of 

Neuroscience Methods 2016)

•Multi-scale (Bae MH. et al. NeuroImage

2009.)

.
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Hand-crafted features (Machine Learning)

Atlas registration based Hand-crafted features Learnt featuresApproaches:

Vector of features:

•Local intensities (Wu T. et al. 

NeuroImage 2012.)

•Neighbour intensities, 
gradients (Pereira S. et al. Journal of 

Neuroscience Methods 2016)

•Multi-scale (Bae MH. et al. NeuroImage

2009.)

•Coordinates (Wachinger C. et al. IEEE 

Trans. Biomed. Eng. 2017.)

.

x, y, z

Requires Registration!
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Hand-crafted features (Machine Learning)

Atlas registration based Hand-crafted features Learnt featuresApproaches:

Advantages

•No registration needed (in 
principle).

•Rotational invariant

•Understanding of the features.

•Can easily try different ML 
algorithms.

J. Miguel Valverde
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Learnt features (Deep Learning)

Atlas registration based Hand-crafted features Learnt featuresApproaches:

Feature Vector

T1 intensity

T2 intensity

Neighbor gradients
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Learnt features (Deep Learning)

Atlas registration based Hand-crafted features Learnt featuresApproaches:

Feature Vector

T1 intensity

T2 intensity

Neighbor gradients

ML
0

1

0

GM

WM

CSF

Neural 
Network
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Learnt features (Deep Learning)

Atlas registration based Hand-crafted features Learnt featuresApproaches:

=

NxN (N-2)x(N-2)
Image Kernel

J. Miguel Valverde

Convolutions
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Learnt features (Deep Learning)

Atlas registration based Hand-crafted features Learnt featuresApproaches:
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Learnt features (Deep Learning)

Atlas registration based Hand-crafted features Learnt featuresApproaches:

4 5 6= =

.2 .3 .5

0 0 1

Output ( ො𝑦)

Labels (y)

G
M

W
M

C
S

F

H( ො𝑦, y) Cross Entropye
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3x3

3x3

3x3

1x3

softmax
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Learnt features (Deep Learning)

Types of information/data

•Convolutions (region)

…
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Local + Contextual
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Learnt features (Deep Learning)

Types of information/data

•Convolutions (region)

•Convolutions (full)

Local + Contextual + Spatial

J. Miguel Valverde
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Learnt features (Deep Learning)

Types of information/data

•Convolutions (region)

•Convolutions (full)

•Other information

– Distance to centroids (de Brebisson A. and 
Montana G. IEEE CVPR Workshop 2015.)

Spatial

..
...
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Learnt features (Deep Learning)

Types of information/data

•Convolutions (region)

•Convolutions (full)

•Other information

– Distance to centroids (de Brebisson A. and 
Montana G. IEEE CVPR Workshop 2015.)

– Encoded spatial information (Rachmadi
MF. et al. Compu. Med. Imaging Graph 2018.)

Spatial

J. Miguel Valverde
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Learnt features (Deep Learning)

Atlas registration based Hand-crafted features Learnt featuresApproaches:

Advantages

•No feature engineering needed.

•Extrapolate to other tasks.

•Parallel processing capabilities.

Disadvantages

•Black box

J. Miguel Valverde
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Pre-processing operations

•Denoising
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Pre-processing operations

•Denoising

• Inhomogeneity correction

Intensity inhomogeneity in MR brain image. (Vovk U. et al. IEEE Trans. 
Med. Imag. 2007)
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Pre-processing operations

•Denoising

• Inhomogeneity correction

•0 mean, 1 variance
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•0 mean, 1 variance
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– Rotation
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Pre-processing operations

•Denoising

• Inhomogeneity correction

•0 mean, 1 variance

•Data augmentation

– Rotation

– Non-linear transformations

J. Miguel Valverde
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Conclusion / Take home message

J. Miguel Valverde

• Important to understand what we have and what we want.

•Check the data. Then, check the data again.


