

MRI Segmentation

MRI Bootcamp, 14th of January 2019

J. Miguel Valverde

UEF // University of Eastern Finland

Segmentation

Segmentation

Segmentation

Types of Information

• Local

4	45	100	110	80	50	76
42	27	186	177	120	167	111
56	79	200	208	211	180	90
53	142	211	209	242	201	76
160	180	200	222	239	190	100
43	233	201	200	166	186	75
25	65	58	37	22	52	90

Types of Information

- Local
- Contextual

Types of Information

- Local
- Contextual
- Spatial

Approaches classification

- Atlas registration based
- Hand-crafted features (Machine Learning)
- Learnt features (Deep Learning)

Chen H. et al. NeuroImage 2018.

Overview

Atlas registration based

Overview

Atlas registration based

Overview

Atlas registration based

- Single-atlas approach
 - Average
 - Most similar

- Single-atlas approach
 - Average
 - Most similar

Not realistic Sensitive to outliers

Atlas registration based

- Single-atlas approach
 - Average
 - Most similar B

Biased

Atlas registration based

- Single-atlas approach
 - Average
 - Most similar
- Multi-atlas approach
 - N most similar
 - Use many as single-atlas

- Single-atlas approach
 - Average
 - Most similar
- Multi-atlas approach
 - N most similar
 - Use many as single-atlas
 - Majority voting (Artaechevarria X. et al. Trans. Med. Im. 2009.)

Majority voting

$$Y_{v} = \arg \max_{y} \sum_{i=0}^{N} f(A_{v}^{i}, y)$$

where
$$f(A_{v}^{i}, y) = \begin{cases} 1 \text{ if } A_{v}^{i} = y \\ 0 \text{ if } A_{v}^{i} \neq y \end{cases}$$

$$Y_{v} \text{ final label at voxel } v, N \text{ number of atlases}$$

$$A_{v}^{i} \text{ atlas } A^{i} \text{ at voxel } v, y \text{ label}$$

- Single-atlas approach
 - Average
 - Most similar

• Multi-atlas approach

- N most similar
- Use many as single-atlas
- Majority voting (Artaechevarria X. et al. Trans. Med. Im. 2009.)
- Bayes (Ali AA. et al. NeuroImage 2005.)

$$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)}$$

where

X voxel Y label

- Single-atlas approach
 - Average
 - Most similar
- Multi-atlas approach
 - N most similar
 - Use many as single-atlas
 - Majority voting (Artaechevarria X. et al. Trans. Med. Im. 2009.)
 - Bayes (Ali AA. et al. NeuroImage 2005.)
 - MRF (Bae MH. et al. NeuroImage 2009.)

Markov Random Field

$$P(y_{\nu}|y_{S-\{\nu\}}) = P(y_{\nu}|y_{N_{\nu}})$$

where

v voxel S set of all voxels N_v neighbor voxels of v

UEF // University of Eastern Finland

Disadvantages:

- Registration is needed (affine and/or non-linear).
- Computationally expensive.
- Very sensitive to registration.

- # 1. Generate a feature collection
- for voxel in allVoxels:
 - f = generateFeatureVector(voxel)
 - allFeatures.**append**(f)

1. Generate a feature collection

for voxel in allVoxels:

f = generateFeatureVector(voxel)

allFeatures.**append**(f)

2. Train a model

model = SVM(parameters)
model.fit(allFeatures)

Hand-crafted features (Machine Learning)

Vector of features:

• Local intensities (Wu T. et al. NeuroImage 2012.)

Vector of features:

- Local intensities (Wu T. et al. NeuroImage 2012.)
- Neighbour intensities, gradients (Pereira S. et al. Journal of Neuroscience Methods 2016)

Vector of features:

- Local intensities (Wu T. et al. NeuroImage 2012.)
- Neighbour intensities, gradients (Pereira S. et al. Journal of Neuroscience Methods 2016)
- Multi-scale (Bae MH. et al. NeuroImage 2009.)

Vector of features:

- Local intensities (Wu T. et al. NeuroImage 2012.)
- Neighbour intensities, gradients (Pereira S. et al. Journal of Neuroscience Methods 2016)
- Multi-scale (Bae MH. et al. NeuroImage 2009.)
- Coordinates (Wachinger C. et al. IEEE Trans. Biomed. Eng. 2017.) Requires Registration!

<u>Advantages</u>

- No registration needed (in principle).
- Rotational invariant
- Understanding of the features.
- Can easily try different ML algorithms.

Learnt features (Deep Learning)

Learnt features (Deep Learning)

Learnt features (Deep Learning)

Convolutions

Learnt features (Deep Learning)

Learnt features (Deep Learning)

Types of information/data

• Convolutions (region)

Local + Contextual

Types of information/data

- Convolutions (region)
- Convolutions (full)

Local + Contextual + Spatial

Types of information/data

- Convolutions (region)
- Convolutions (full)
- Other information
 - Distance to centroids (de Brebisson A. and Montana G. IEEE CVPR Workshop 2015.)

Spatial

Types of information/data

- Convolutions (region)
- Convolutions (full)
- Other information
 - Distance to centroids (de Brebisson A. and Montana G. IEEE CVPR Workshop 2015.)
 - Encoded spatial information (Rachmadi MF. et al. Compu. Med. Imaging Graph 2018.)

Spatial

<u>Advantages</u>

- No feature engineering needed.
- Extrapolate to other tasks.
- Parallel processing capabilities.

Disadvantages

• Black box

Denoising

- Denoising
- Inhomogeneity correction

Intensity inhomogeneity in MR brain image. (Vovk U. et al. IEEE Trans. Med. Imag. 2007)

- Denoising
- Inhomogeneity correction
- 0 mean, 1 variance

- Denoising
- Inhomogeneity correction
- 0 mean, 1 variance
- Data augmentation
 - Rotation

- Denoising
- Inhomogeneity correction
- 0 mean, 1 variance
- Data augmentation
 - Rotation
 - Non-linear transformations

Conclusion / Take home message

- Important to understand what we have and what we want.
- Check the data. Then, check the data again.